
When Discreteness Meets Continuity:

Energy-Optimal DVS Scheduling Revisited ∗

Chung-hsing Hsu and Wu-chun Feng
Los Alamos National Laboratory

Los Alamos, NM 87545
{chunghsu,feng}@lanl.gov

Abstract

The energy-optimal DVS scheduling problem seeks to
create a frequency-voltage schedule for the CPU that can
achieve energy minimization with tolerable performance
loss. Prior solutions to the problem assume that the CPU
can run across a continuous range of frequencies and volt-
ages, but today’s DVS-enabled microprocessors can only
support a discrete set. As a result, the energy-optimal re-
sults in the continuous case may no longer be valid in the
discrete case. This paper bridges the two cases by show-
ing that the optimality can be retained through emulation.
The result is also applicable to systems that consider leak-
age and/or system energy usage.

1. Introduction

For battery-powered embedded and mobile systems,
DVS (Dynamic Voltage Scaling) has been recognized
as an effective mechanism to prolong battery life. The
mechanism allows the supply voltage (and operating
frequency) of the system’s microprocessor(s) to be
scaled down dynamically. Since a processor’s energy
consumption exhibits a super-linear relationship with
its supply voltage, the scaling-down effect necessar-
ily results in a considerable amount of energy savings.
However, the scaling-down effect also introduces poten-
tial performance degradation because of a lower max-
imum operating frequency that can be driven by a
scaled-down supply voltage. Thus, knowing how to ap-
ply DVS to a set of tasks — so that the CPU energy
consumption is minimized while none of the tasks ex-
perience intolerable performance loss — becomes a key

∗ This work was supported by DOE Laboratory-Directed Re-
search & Development through LANL contract W-7405-ENG-
36. Available as LANL report: LA-UR 05-3104.

research issue, which we refer to as the DVS schedul-
ing problem in this paper.

Research on the DVS scheduling problem can be
traced back to as early as 1994-1995 [12, 14], a cou-
ple of years before the production of real DVS-enabled
microprocessors. In these early works, a DVS-enabled
microprocessor was assumed to be able to run at a
continuous range of voltages and frequencies with a
cubic power-frequency relationship. Unfortunately, to-
day’s DVS-enabled microprocessors can only run at a
discrete set of voltages and frequencies. As a result,
although these early works are still applicable, e.g.,
rounding up the calculated speed to the next avail-
able clock speed, their optimality with respect to CPU
energy consumption no longer holds.

What is more detrimental is that these early works
may not even have sub-optimal results due to the
ideal assumption of the cubic power-speed relation-
ship at low clock speeds. Today’s DVS-enabled micro-
processors exhibit a linear power-frequency relation-
ship at lower clock speeds. Thus, the ideal assump-
tion over-states the energy-reduction potential at low
clock speeds, and any DVS scheduling algorithm based
on such an assumption will execute tasks at low clock
speeds whenever possible. However, executing a task
at a low speed will increase the task’s execution time,
thereby consuming more standby energy [4]. If the real
energy savings by running at low CPU speeds cannot
exceed the energy increases due to a longer execution
time, a task may end up using more energy in DVS ex-
ecutions than in non-DVS executions. Therefore, it is
desirable to derive an energy-optimal DVS scheduling
solution based on the assumptions that hold for to-
day’s DVS-enabled microprocessors.

A straightforward approach in deriving an energy-
optimal DVS scheduling solution for today’s DVS-
enabled microprocessors is to cast the problem as an
integer programming problem and solve it via exist-
ing tools that are generally based on exhaustive search.

chunghsu
Text Box
Technical Report LA-UR 05-3104, February 2005.

While the optimal solution can be easily (but compu-
tationally expensively) computed this way, we argue
that the structure of the optimal schedule is more or
less destroyed. We argue that retaining the structure
of the optimal solution is beneficial in that the struc-
ture may provide useful hints to refine heuristics that
are designed to solve the DVS scheduling problem effi-
ciently.

For example, Kwon and Kim recently showed that
the optimal solution derived by Yao et al.’s polynomial-
time algorithm for a set of non-periodic, preemptable
real-time tasks in the continuous setting [14] can be
easily and quickly transformed into an optimal solu-
tion in the discrete setting [6]. In the original optimal
schedule, each task is assigned a single clock frequency.
Kwon and Kim proved that, if every such frequency
is emulated with two bounding supported frequencies,
then the resulting schedule is optimal. In other words,
heuristics that are shown to be effective for the prob-
lem addressed by Yao et al. will probably remain effec-
tive for the discrete version of the problem.

Kwon and Kim’s result [6] provided a big step to-
wards solving the scheduling problem for today’s DVS-
enabled microprocessors, but unfortunately, it relies on
an assumption that does not yet hold for today’s DVS
technology. Specifically, Kwon and Kim’s work is based
on the highly-cited theoretical result from Ishihara and
Yasuura [3], a result that was derived under an ideal as-
sumption of the power-frequency relationship. Hence,
the optimality result that Kwon and Kim derived may
not hold for today’s DVS-enabled microprocessors. But
we will show that Kwon and Kim’s optimality result
can hold for today’s DVS-enabled microprocessors. In
fact, we will prove that a less strict power-frequency re-
lationship is needed for Kwon and Kim’s optimality re-
sult to remain true, and this power-frequency relation-
ship can be easily satisfied through a careful selection
of operating points in DVS-enabled microprocessors.

In short, we extend the highly-cited DVS schedul-
ing theory from Ishihara and Yasuura so that it can
be applied to today’s DVS-enabled microprocessors.
The extended result does not make any assumption
about the power-frequency relationship. Hence, the ex-
tended result can be used for leakage-aware CPU en-
ergy minimization as well as system-wide energy mini-
mization, given appropriate power consumption values.
Moreover, based on our extension of the above schedul-
ing theory and subsequent analysis, a unified frame-
work that subsumes many important existing works in
DVS scheduling theory for the discrete case can be de-
rived.

The remainder of the paper is organized as follows.
We first give a brief review of the established results in

energy-optimal DVS scheduling. Then in Section 3, we
present our main theorem. The proof of how this theo-
rem extends previous work is shown in Section 4. After
that, we demonstrate in Section 5 a use of the theo-
rem by taking into account the leakage power. In Sec-
tion 6 concluding remarks and future work are pre-
sented.

2. Background and Related Work

In the continuous version of the energy-optimal
DVS scheduling problem, there is a fundamental theo-
rem [14] that has been used extensively and is stated
as follows.

If the CPU power P (s) is a convex1 func-
tion of its speed s, then the schedule that ex-
ecutes the entire job at a constant speed and
completes the task right at its deadline D is
energy-optimal.

Mathematically, the theorem gives a description about
the structure of the optimal solution sopt(t) for the fol-
lowing problem:

min

{

∫ D

0

P (s(t))dt :

∫ D

0

s(t)dt = W, s(t) ≥ 0

}

(1)

where s(t) is the processor speed at time t and W is
the required CPU clock cycles to complete the task;
the theorem says, if P (s) is convex, then sopt(t) = W

D
.

As mentioned in Section 1, early work on DVS
scheduling assumes a cubic power-frequency relation-
ship, which is based on an approximation of the alpha-
power law [11] with vt = 0 and α = 2.

s ∝
(v − vt)

α

v
and P (s) ∝ s · v2 (2)

where v and s are the supply voltage and operating
frequency of a DVS-enabled microprocessor, respec-
tively. For today’s technology, the threshold voltage vt

is never zero and the technology parameter α is around
1.3 [15]. Hence, the cubic power-frequency relationship
P (s) ∝ s3 over-estimates the power-reduction poten-
tial at lower CPU speeds, even though the relationship
makes P (s) a convex function so that the above theo-
rem can be applied.

Ishihara and Yasuura’s work in [3] is one of the first
to tackle the issue of discrete operating points in DVS-
enabled microprocessors. Assuming that only a limited

1 A function P (s) : R → R is convex on an interval I = [a, b] if
for all points s1 and s2 in I and 0 ≤ λ ≤ 1,

P (λs1 + (1 − λ)s2) ≤ λP (s1) + (1 − λ)P (s2).

2

 0

 200

 400

 600

 800

 1000

 1200

 1.1 1.2 1.3 1.4 1.5 1.6

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Supply Voltage (V)

208-MHz

312-MHz

416-MHz

520-MHz

624-MHz

measured
ideal

Figure 1. A DVS-enabled Intel PXA270.

set of supply voltages is supported, they found that not
only can an unsupported CPU frequency be easily emu-
lated through a combination of supported frequencies,2

but also using only the two immediately-neighboring
frequencies to emulate the unsupported frequency will
result in the lowest power consumption among all pos-
sible combinations. In other words, the above theorem
remains valid for the discrete case in the following way:

[· · ·] If the desired CPU frequency is not di-
rectly supported, the two immediately-
neighboring CPU frequencies can be used to
emulate the desired CPU frequency and re-
sult in an energy-optimal DVS schedule.

Ishihara and Yasuura’s optimality result is based on
an assumption that Equation (2) holds for vt ≥ 0 and
1 ≤ α ≤ 2. However, this equation is not always valid
for today’s DVS-enabled microprocessors. First, these
processors only provide a discrete set of CPU frequen-
cies, whereas the equation requires a continuous range
to be directly supported. Second, the equation only
models a processor’s dynamic power consumption and
ignores other power consumption sources. As a result,
Equation (2) over-states the energy-reduction poten-
tial at low clock speeds, as illustrated in Figure 1. The
data is taken from Intel’s application note [1].

In the following, we will show that Ishihara and Ya-
suura’s optimality result can still hold for today’s DVS-
enabled microprocessors. The extension comes from a
key theorem that assumes a discrete set of operating
points in a DVS-enabled microprocessor but does not
make any assumption about the power-frequency rela-
tionship.

2 i.e., the 1.5-GHz clock speed can be emulated by running half
of the time at the 1.0-GHz clock speed and half the time at the
2.0-GHz clock speed.

3. A Fundamental Theorem

The discrete version of the energy-optimal DVS
scheduling problem is formulated as follows: Given a
microprocessor that only exports n operating points
{(si, Pi) : 1 ≤ i ≤ n} where Pi is the power consump-
tion of the CPU speed si and 0 ≥ s1 < s2 < · · · < sn,
we seek to find a solution (topt

1 , · · · , topt
n) for the follow-

ing problem.

min

{

∑

i

Piti :
∑

i

siti = W,
∑

i

ti = D, ti ≥ 0

}

(3)
If we re-write (3) by replacing ti with D · ri, we can
derive an equivalent problem formulation as follows.

D · Pmin(
W

D
) (4)

where Pmin(s)
def
=

min

{

∑

i

Piri :
∑

i

siri = s,
∑

i

ri = 1, ri ≥ 0

}

(5)

The function Pmin(s) represents the lowest power con-
sumption with the best possible combination of the
n operating points that emulates the processor speed
s. Equation (4) reveals important information about
the energy-optimal DVS schedule for the discrete case;
that is, the optimal schedule will run at (possibly em-
ulated) speed W/D throughout the entire job execu-
tion. In other words, the structure of an energy-optimal
DVS schedule for the continuous case and for the dis-
crete case are very similar.

In fact, the similarity result is not surprising since
we can prove that Pmin(s) is a convex function on
[s1, sn]. Because of this, we can still apply the main
theorem for the continuous case to the discrete case
and, hence, get an energy-optimal DVS schedule whose
structure is very similar to the structure of optimal
DVS schedule in the continuous case. Note that the
convexity of Pmin(s) does not require any particular
power-frequency relationship. That is, the common as-
sumption that Pi ≡ P(si) for some convex function
P(s) is not needed. As we will discuss later, the gen-
erality of Theorem 1 provides tremendous help in the
construction of an energy-optimal DVS schedule since
the assumption Pi ≡ P(si) does not always hold in
practice.

Theorem 1 Pmin(s) is convex on [s1, sn].

Proof Given two frequencies f and g, assume two sets
{ui} and {vi} such that

Pmin(f) =
∑

i

Piui,
∑

i

siui = f,
∑

i

ui = 1, ui ≥ 0

3

and

Pmin(g) =
∑

i

Pivi,
∑

i

sivi = g,
∑

i

vi = 1, vi ≥ 0

For any λ ∈ [0, 1], let ri
def
= λui + (1 − λ)vi. It should

be easy to verify that

• ri ≥ 0 for all i,

•
∑

i ri = 1, and

•
∑

siri = λf + (1 − λ)g.

Also, we can derive that

Pmin(λf+(1−λ)g) ≤
∑

i

Piri = λPmin(f)+(1−λ)Pmin(g)

Thus Pmin(s) is convex.

To demonstrate the generality of Theorem 1, let us
consider the energy-optimal DVS scheduling problem
for a set of preemptable real-time jobs. The continuous
version of the problem has been well studied, and Yao
et al. [14] already provides one of the first polynomial-
time algorithms to derive an optimal DVS schedule,
provided P (s) is convex. The derived schedule will ex-
ecute a job at a single CPU frequency. Because of The-
orem 1, we can replace every unsupported frequency
s with the optimal DVS schedule for Pmin(s) and cre-
ate an energy-optimal DVS schedule for the general dis-
crete case. This approach extends the Kwon and Kim’s
DVS scheduling algorithm [6] whose optimality result
is based on Ishihara and Yasuura’s optimality result [3]
and thus only holds for a restricted discrete case.

It may be argued that the DVS schedule gener-
ated through the Pmin(s)-directed emulation will in-
troduce a considerable amount of transition overhead
because each ideal frequency may be emulated using
several frequencies and the transition between frequen-
cies (and also the corresponding voltages) in today’s
DVS-enabled microprocessors is very expensive (ap-
proximately, 10-100 µs). However, we will show in the
next section that at most two frequencies are needed to
emulate the desired frequency, and we will give a neces-
sary and sufficient condition for when the two frequen-
cies will be the immediate neighbors of the desired fre-
quency.

In summary, because of Theorem 1, the energy-
optimal DVS algorithm for the discrete case is poten-
tially no more complicated than the optimal DVS al-
gorithm for the continuous case.

4. An In-Depth Analysis on Pmin(s)

In the previous section, we presented a key theorem
that bridges energy-optimal DVS scheduling in the dis-
crete case with DVS scheduling in the continuous case

through a convex function Pmin(s). As part of the re-
sult, we argued that the optimal DVS algorithms for
the discrete case and for the continuous case poten-
tially have the same time complexity if Pmin(s) is not
complicated to compute. In this section, we will give
an in-depth analysis on Pmin(s) and we will argue that
the function is fairly simple to compute. Moreover, the
Pmin(s) function can derive a unified framework for
several important existing work in DVS scheduling the-
ory.

First, Pmin(s) models an easy linear programming
(LP) problem. According to LP research results, at
most two DVS operating points will be required to con-
struct an energy-optimal DVS schedule. Again, this op-
timal solution structure does not rely on any special
setup for DVS settings such as Pi ≡ P(si) for some con-
vex function P(s). Since at most two operating points
will be used, a straightforward exhaustive enumeration
of all possible pairs results in an O(n2)-time computa-
tion of Pmin(s) for a single s.

The time complexity of Pmin(s) computation can be
further reduced if additional assumptions are imposed
which will narrow down the possible locations of the
two operating points in constructing Pmin(s). Propo-
sition 1 presents one such approach, and Ishihara and
Yasuura’s optimality result can be considered as an ap-
plication of Proposition 1.

Proposition 1 If

∀i, Pmin(si) = Pi (6)

then
Pmin(s) ≡ Pj · rj + Pj+1 · (1 − rj)

where

rj =
sj+1 − s

sj+1 − sj

and sj ≤ s ≤ sj+1

Proof Due to convexity of Pmin(s).

Proposition 2 If Pi = P(si) for some convex function
P(s), then Condition (6) is true.

Proof It is obvious that Pmin(si) ≤ Pi. To prove that
Pmin(si) ≥ Pi, we use the classical Jensen’s discrete
inequality as follows.

∑

j

rjPj =
∑

j

rjP(sj) ≥ P(
∑

j

rjsj) = P(si) = Pi.

The proof is completed.

Condition (6) is a desirable property to have in a
DVS-enabled microprocessor. As pointed out by Lorch
and Smith [7], the use of an operating point i that sat-
isfies the inequality Pmin(si) < Pi should be avoided

4

i 1 2 3 4

si (MHz) 33 100 266 333
Pi (mW) 19 72 600 750

(a)

 0
0 100 200 300 400

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Clock Speed (MHz)

33-MHz 100-MHz

266-MHz

333-MHz

Chord L

(b)

Figure 2. A DVS-enabled IBM PowerPC 405LP.

since one can get lower power consumption at the same
clock speed using other operating points; otherwise, a
DVS scheduling algorithm may result in sub-optimal
energy usage. we call these unwelcome operating points
power-inefficient operating points.

Definition 1 An operating point (si, Pi) is called
power-inefficient if Pmin(si) < Pi.

For example, the 266-MHz operating point in a
DVS-enabled PowerPC 405LP microprocessor 3, shown
in Figure 2(a), is power-inefficient. The 266-MHz clock
speed can be emulated by running at 100-MHhz for
2/7 of time and running at 266-MHz for 5/7 of time,
and this emulation results in a power consumption of
72 mW · (2/7) + 750 mW · (5/7) = 557 mW. Since
the power consumption of the 266-MHz operating point
is 600 mW, the 266-MHz operating point is power-
inefficient.

To check whether or not Condition (6) is satisfied
in a DVS-enabled microprocessor, we derive an equiva-
lent form for Condition (6), stated formally as follows.

Proposition 3 Condition (6) is true if and only if

P2 − P1

s2 − s1
≤

P3 − P2

s3 − s2
≤ · · · ≤

Pn − Pn−1

sn − sn−1
(7)

Proof (The if part) By contradiction. (The only-if
part) Due to the convexity of Pmin(s).

3 The data is taken from [13].

Now consider the PowerPC 405LP example again. We
can easily derive that

600 − 72

266 − 100
= 3.18 >

750 − 600

333 − 266
= 2.24.

If we plot the speed-power curve of this microproces-
sor as in Figure 2(b), we will find out that the 266-MHz
operating point lies above the chord that connects the
100-MHz and 333-MHz operating points. In fact, The
chord L represents the power consumption of all emu-
lated speeds between 100-MHz and 333-MHz through
the combination of the 100-MHz and 333-MHz operat-
ing points. Hence, to identify all power-inefficient op-
erating points, we can construct an underlying con-
vex contour for the speed-power curve, and any oper-
ating point that lies above this convex contour is power-
inefficient.

In summary, in this section we have given an in-
depth analysis on Pmin(s). We showed that the highly-
cited DVS scheduling theory from Ishihara and Ya-
suura is an instance of a more general optimality result.
We also presented a necessary (and also sufficient) con-
dition of when this more general optimality result will
be true. The condition is related to the set of operat-
ing points in a DVS-enabled microprocessor. It is desir-
able to have the condition satisfied; otherwise, a DVS
scheduling algorithm will be less effective for CPU en-
ergy reduction. We provided a way to guarantee that
the condition will be satisfied.

5. The Impact of the Idle Power

In general, if the CPU has no task to execute, it
will put itself in an idle state. In the idle state, the
CPU either is executing no-op instructions at the min-
imum speed or enters into one of the sleep modes. In
any case, the CPU idle power Pidle is never zero, i.e.,
Pidle 6= 0.

In the past, the impact of the idle power is ignored,
thereby resulting in a common assumption that en-
ergy consumption will be reduced whenever the pro-
cessor speed is scaled down. However, researchers (e.g.,
[8, 10, 2]) have observed that this assumption does not
always hold for today’s DVS-enabled microprocessors
such as StrongARM SA-1100 and Transmeta Crusoe
processor. The root of the problem is that the idle
power has increased to a point that it can no longer
be ignored. As a result, the DVS schedule that ex-
ecutes a job at a higher-than-necessary clock speed
may consume less energy. In the following, we will
use Pmin(s) and subsequent analysis results to model
energy-optimal DVS scheduling in the presence of the
nonzero idle power.

5

First of all, we formulate the energy-optimal DVS
scheduling in the presence of the nonzero idle power as
follows.

min{d · Pmin(
W

d
) + Pidle · (D − d) : d ≤ D} (8)

Through a few algebraic manipulations, we can derive
an equivalent formulation for the problem as follows.

min{
Pmin(s) − Pidle

s
· W : s ≥

W

D
} + Pidle · D (9)

This new problem formulation reveals two pieces of in-
teresting information. One information is that the idle
power Pidle can be considered as existence through-
out the entire time-interval [0, D), This interpretation
assists in solving the optimal DVS scheduling prob-
lem with respect to system-wide energy minimization.
Problem (9) indicates that the standby power con-
sumed by non-CPU devices in the target system does
not matter as long as the amount of the standby power
is fixed. We can focus on generating an energy-optimal
DVS schedule that minimizes CPU energy consump-
tion. Another information is that the optimal solution
will minimize the CPU energy consumption per cycle,

i.e., Pmin(s)−Pidle

s
. The (possibly emulated) processor

speed used in the optimal solution is called the criti-
cal speed [2, 5].

5.1. The Critical Speed

The term “critical speed” is first introduced by Irani
et al. in [2] when they proposed an energy-optimal DVS
scheduling algorithm in the case of the nonzero idle
power. In their problem formulation, Pmin(s)/s is as-
sumed to be a monotonic (and also convex) function.
On the other hand, Jejurikar et al. [5] found out that,
when the leakage power is also considered, the curve
Pmin(s)−Pidle

s
with respect to the processor speed s is

a U-shaped curve. They use the critical speed, which
is the lowest point in the curve, to explicitly rule out
the use of some operating points in the construction of
an energy-optimal DVS schedule. Intuitively, execut-
ing below the critical speed consumes more time and
energy and should be avoided in creating an energy-
optimal DVS schedule. Mathematically speaking, they
factor Pidle into Pmin(s) (therefore, Pidle does not need
to be a constant), and they modify Pmin(s)/s to be a
monotonic function.

Our Pmin(s)-derived framework can easily model
both problem formulations. We can model Irani et al.’s
problem by adding a new operating point (0, Pidle) into
the set of operating points. For Jejurikar et al.’s prob-
lem, we do not need to explicitly restrict the set of

operating points because the operating points below
the critical speed will never be used in the construc-
tion of an energy-optimal DVS schedule due to their

high Pmin(s)−Pidle

s
ratio. Finally, both problem formula-

tions only consider the continuous version of the prob-
lem, whereas Problem (9) models the discrete case as
well.

Finally, we would like to point out that the parti-
tion of the n operating points by a threshold processor
speed has been used in energy-optimal DVS schedul-
ing, and the “critical power slope” technique [8] is one
of them. However, the power-efficient operating points
described in the previous section is not one of them.

5.2. Critical Power Slope

One particular technique, called critical power slope
[8], identifies operating points that should be avoided
in energy-optimal DVS scheduling in the case of the
nonzero idle power. These operating points are called
energy-inefficient operating points. Do not get confused
with power-inefficient operating points defined in the
previous section. The two definitions are not equiva-
lent. As we will explain in details later, an energy-
efficient operating point can be power-inefficient. In
other words, though all operating points of a DVS-
enabled microprocessor are energy-efficient, the Ishi-
hara and Yasuura’s optimality result cannot be guar-
anteed.

Formally speaking, an operating point (si, Pi) is
called energy-efficient if the energy consumed by ex-
ecuting W CPU cycles at this operating point is no
greater than the energy consumed by any operating
point with a higher processor speed, i.e., ∀ sj > si,
such that

Pi ·
W

si

+ Pidle · (D −
W

si

) ≤ Pj ·
W

sj

+ Pidle · (D −
W

sj

).

Otherwise, the operating point is called energy-
inefficient. The above inequality can be simpli-
fied, resulting in the following equivalent defini-
tion for an energy-efficient operating point. The ratio
Pi−Pidle

si

is the so-called critical power slope for set-
ting (si, Pi).

Definition 2 An operating point (si, Pi) is called
energy-efficient if

∀ j > i,
Pi − Pidle

si

≤
Pj − Pi

sj − si

(10)

Consider the PowerPC 405LP example again. In the
previous section, we illustrated that the 266-MHz op-
erating point is power-inefficient because a lower power
consumption can be achieved using other operating

6

points that emulate the 266-MHz clock speed. How-
ever, the 266-MHz is energy-efficient when Pidle = 12
mW, i.e.,

600 − 12

266
= 2.21 ≤

750 − 600

333 − 266
= 2.24

Note that the 266-MHz operating point is considered
energy-inefficient if Pidle = 0.

From this example, we know that an energy-efficient
operating point can be power-inefficient. Why? It turns
out that Condition (6) can derive Condition (10) with
s1 ≡ 0 and P1 ≡ Pidle, In other words, if all the op-
erating points are power-efficient, they will be energy-
efficient, and an energy-efficient operating point does
not necessarily mean that it will be power-efficient.
Specifically, Condition (6) can derive two other con-
ditions according to Proposition 4. These two derived
conditions plus Condition (6) can derive Condition
(10), as illustrated in Figure 3.

Proposition 4 If Condition (7) is true, then the follow-
ing two conditions are true.

∀1 ≤ i < n,
Pi+1 − P1

si+1 − s1
≤

Pi+1 − Pi

si+1 − si

(11)

∀1 < i < n,
Pi − P1

si − s1
≤

Pi+1 − P1

si+1 − s1
(12)

Proof Omitted.

In sum, to guarantee that the Ishihara and Yasuura’s
optimality result still holds for today’s DVS-enabled
microprocessors, all the operating points need to be
power-efficient, which is a more strict requirement than
for all operating points being energy-efficient, a con-
cept derived from the “critical power slope” technique.

6. Conclusions and Future Work

The energy-optimal DVS scheduling problem seeks
to create a DVS schedule for the CPU that can achieve
energy minimization with tolerable performance loss.
Prior solutions to the problem assume that the CPU
can run across a continuous range of frequencies and
voltages with a cubic power-frequency relationship. In
this paper we presented a key theorem that is not based
on these two unrealistic assumptions, yet it still retains
the energy-optimal results in these previous works for
today’s DVS-enabled microprocessors. Moreover, based
on our extension of the DVS scheduling theory and sub-
sequent analysis, a unified framework that subsumes
many important existing works in DVS scheduling the-
ory for the discrete case can be derived.

The key theorem and subsequent analysis results
we presented in this paper assume a very basic set-
ting and, hence, can be extended in various ways. For

example, the transition overhead can be taken into ac-
count, the deterministic execution time can be replaced
with stochastic execution time, and a set of periodic
real-time tasks can be used instead of a single job. We
also wish to perform simulation studies to evaluate the
degree of the benefit in energy-optimal DVS schedul-
ing versus heuristic techniques such as pseudo operat-
ing points [9]. The “pseudo operating points” technique
pre-defines additional operating points through emula-
tion and rounds up the calculated clock speed to the
next (possibly pseudo) operating point. This technique
is closely related to the operating-point setup problem
[10] in DVS scheduling theory.

References

[1] IntelCorporation. IntelPXA27xprocessor familypower
requirements. Application Note 280005-002, 2004.

[2] S. Irani, S. Shukla, and R. Gupta. Algorithms for power
savings. In Proceedings of the 14th Symposium on Dis-
crete Algorithms, January 2003.

[3] T. Ishihara and H. Yasuura. Voltage scheduling prob-
lem for dynamically variable voltage processors. In In-
ternational Symposium on Low Power Electronics and
Design (ISLPED), August 1998.

[4] R. Jejurikar and R. Gupta. Dynamic voltage scaling
for system-wide energy minimization in real-time em-
bedded systems. In International Symposium on Low
Power Electronics and Design (ISLPED), August 2004.

[5] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded sys-
tems. In Proceedings of the 41th Design Automation
Conference (DAC), June 2004.

[6] W-C Kwon and T. Kim. Optimal voltage allocation
techniques for dynamically variable voltage processors.
In Proceedings of the 40th Design Automation Confer-
ence (DAC), June 2003.

[7] J. Lorch and A. Smith. Operating system modifica-
tions for task-based speed and voltage scheduling. In
The First International Conference on Mobile Systems,
Applications, and Services (MobiSys), May 2003.

[8] A. Miyoshi, C. Lefurgy, E. Hensbergen, and R. Rajku-
mar. Critical power slope: Understanding the runtime
effects of frequency scaling. In Proceedings of the 16th
Annual ACM International Conference on Supercom-
puting (ICS), June 2002.

[9] V. Rao, G. Singhal, and A. Kumar. Real tim,e dynamic
voltage scaling for embedded systems. In International
Conference on VLSI Design (VLSID), January 2004.

[10] S. Saewong and R. Rajkumar. Practical voltage-scaling
for fixed-priority RT-systems. In Proceedings of the
IEEE Real-Time and Embedded Technology and Appli-
cations Symposiuam (RTAS), May 2003.

[11] T. Sakurai and A. Newton. Alpha-power law MOSFET
model and its applications to CMOS inverter delay and

7

P2−P1

s2−s1

P3−P1

s3−s1

P4−P1

s4−s1
· · · Pn−P1

sn−s1
(10)

P3−P2

s3−s2

P4−P3

s4−s3
· · · Pn−Pn−1

sn−sn−1
(7)

� � �

� � �

(9)
? ? ?

@@I

��	

� �
�

� �
�

�

Figure 3. The enclosed area represents the energy-efficiency of the operating point (s3, P3).

other formulas. IEEE Journal of Solid-State Circuits,
25(4):584–594, April 1990.

[12] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In the 1st Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), November 1994.

[13] R. Xu, C. Xi, R. Melhem, and D. Mossé. Pratical PACE
for embedded systems. In the ACM International Con-
ference on Embedded Software (EMSOFT), September
2004.

[14] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. In IEEE Annual Symposium
on Foundations of Computer Science, October 1995.

[15] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. The-
oretical and practical limits of dynamic voltage scaling.
In Proceedings of the 41th Design Automation Confer-
ence (DAC), June 2004.

8

